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A B S T R A C T

Background and Objective: Helmet-Continuous Positive Airway Pressure (H-CPAP) is a non-invasive res-
piratory support that is used for the treatment of Acute Respiratory Distress Syndrome (ARDS), a severe
medical condition diagnosed when symptoms like profound hypoxemia, pulmonary opacities on radiography,
or unexplained respiratory failure are present. It can be classified as mild, moderate or severe. H-CPAP therapy
is recommended as the initial treatment approach for mild ARDS. Even though the efficacy of H-CPAP in
managing patients with moderate-to-severe hypoxemia remains unclear, its use has increased for these cases
in response to the emergence of the COVID-19 Pandemic. Using the electronic medical records (EMR) from the
Pulmonology Department of Vimercate Hospital, in this study we develop and evaluate a Machine Learning
(ML) system able to predict the failure of H-CPAP therapy on ARDS patients.
Methods: The Vimercate Hospital EMR provides demographic information, blood tests, and vital parameters
of all hospitalizations of patients who are treated with H-CPAP and diagnosed with ARDS. This data is used to
create a dataset of 622 records and 38 features, with 70%–30% split between training and test sets. Different
ML models such as SVM, XGBoost, Neural Network, Random Forest, and Logistic Regression are iteratively trained
in a cross-validation fashion. We also apply a feature selection algorithm to improve predictions quality and
reduce the number of features.
Results and Conclusions: The SVM and Neural Network models proved to be the most effective, achieving
final accuracies of 95.19% and 94.65%, respectively. In terms of F1-score, the models scored 88.61% and
87.18%, respectively. Additionally, the SVM and XGBoost models performed well with a reduced number of
features (23 and 13, respectively). The PaO2/FiO2 Ratio, C-Reactive Protein, and O2 Saturation resulted as the
most important features, followed by Heartbeats, White Blood Cells, and D-Dimer, in accordance with the clinical
scientific literature.
1. Introduction

Acute Respiratory Distress Syndrome (ARDS) is a type of noncar-
diogenic (i.e., not caused by heart failure or fluid overload) pulmonary
edema that causes breathing difficulties, fast breathing, and low oxygen
levels. It can quickly lead to respiratory failure and occurs when an
injury to the lungs or another part of the body triggers the release of
inflammatory mediators. These mediators cause inflammation in the
lung air sacs and blood vessels, leading to damage and fluid buildup.
This results in decreased lung function and impaired gas exchange [1].
ARDS is a serious condition that accounts for 10% of Intensive Care
Unit (ICU) admissions and 25% of mechanical ventilation procedures
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in the United States. It has a high mortality rate, with in-hospital death
rates in the range of 46%–60% for severe cases [2,3]. According to a
retrospective U.S. study [4], the estimated incidence of ARDS in 2014
was 193.4 cases per 100,000 people. The Berlin Criteria [1] are used
for the diagnosis of ARDS in adults. Diagnosis is based on the timing of
symptom onset, bilateral opacities on chest imaging, the likely source
of pulmonary edema, and oxygenation as measured by the PaO2/FiO2
Ratio. ARDS can be classified as mild, moderate, or severe:

• Mild: 200 < PaO2/FiO2 Ratio ≤ 300 mmHg;
• Moderate: 100 < PaO2/FiO2 Ratio ≤ 200 mmHg;
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• Severe: PaO2/FiO2 Ratio ≤ 100 mmHg.

According to Grieco et al. [5], Non-Invasive Respiratory Support
(NIRS) strategies, such as Helmet-Continuous Positive Airway Pres-
sure (H-CPAP) therapy, are recommended as the first-line treatment
for ARDS. Compared to standard oxygen therapy, these NIRS thera-
pies have been shown to prevent endotracheal intubation in patients
with mild hypoxemia [6–8]. Despite the uncertain effectiveness of
NIRS strategies in treating patients with moderate-to-severe hypox-
emia, these therapies have been increasingly employed for moderate
and severe ARDS cases [9–11].

SARS-CoV-2 has caused a global pandemic of immense proportions,
resulting in varying mortality rates across countries for reasons that
remain unknown. The Italian national database records more than 4
million SARS-CoV-2-positive cases diagnosed between January 2020
and July 2021, including over 415 thousand patients hospitalized
for coronavirus disease-19 (COVID-19) and more than 127 thousand
deaths [12]. At Vimercate Hospital, Piluso et al. [13] demonstrated
how H-CPAP therapy ‘‘during the three COVID-19 waves’’ had an average
success rate of 69.33% and an average mortality rate of about 20.66%.
Symptoms of the standard ARDS and the one caused by COVID-19
are slightly different [14]. However, our study did not differentiate
between the two distinct forms of ARDS.

The advent of Machine Learning (ML), with its ability to construct
mathematical models that classify items based on data analysis, has
significantly advanced medical diagnostics [15]. This progress has
undoubtedly been facilitated by the digital revolution of recent years,
which has enabled the recording, archiving, and easy accessibility
of various types of clinical data in a digital format. While to our
knowledge there are no direct relevant studies on ML applied to H-
CPAP and ARDS, Eguchi et al. [16] studied Obstructive Sleep Apnea
(OSA) focusing on factors related to poor Mask-CPAP adherence using
ML. They employed therapy logs from 219 patients, achieving an
86.4% F1-score. Another study by Mamandipoor et al. [17] predicted
the success of Mechanical Ventilation (MV) therapy in ICU patients.
Using the VENTILA dataset, they achieved predictive models, primarily
using Recurrent Neural Networks (RNN), with an AUC of 72%. Le
et al. [18] worked on predicting ARDS onset using XGBoost models.
Their study, using the MIMIC-III database, achieved AUROC values of
90.5% for detecting ARDS at onset and of 82.7% for predicting ARDS
up to 48 h before onset. Lastly, Singhal et al. [19] predicted early
onset ARDS in COVID-19 patients. They used data from ICU patients,
achieving AUROC of 89%, sensitivity of 77%, and specificity of 85%.
Their eARDS system predicted ARDS development at least 12 h before
the Berlin clinical criteria. They incorporated statistical variables along
with numerical values of features, identifying important predictors such
as O2 saturation and blood pressure.

Taking advantage of the digital data in the Electronic Medical
Records (EMR) of the Pulmonology Department of the Vimercate Hos-
pital, our study aims to demonstrate that a new data-driven approach
to the treatment with H-CPAP therapy of ARDS patients is possible.
This leads to the creation of a system capable of predicting the failure
of H-CPAP therapy before it occurs, with positive consequences for the
patient and the care provider entity. At the same time, it aims to un-
derstand what clinical and physiological conditions of the patient most
significantly contribute to the failure of H-CPAP therapy. Preliminary
results indicate that ML systems developed in this study can accurately
detect therapy failures with over 93% accuracy. This leads to improved
patient care and more efficient financial management for the hospital.

2. Materials and methods

This section explains the methodology employed in the develop-
ment of our ML models. After clarifying the choice of the target variable
for prediction, we provide a summary of the dataset used for cross-
validation and testing of the models, along with an outline of the
pre-processing steps adopted. Next, we describe the techniques for
feature selection, the ML models considered, and the metrics applied.
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Fig. 1. Stratified distribution of the considered yearly admissions at the Vimercate
Hospital of patients diagnosed with ARDS and treated with H-CPAP. It is reasonable
to think that the increases in the years 2020 and 2021 were due to the SARS-CoV-2
disease.

2.1. Addressed medical question and target variable

Our study focuses on the outcomes of H-CPAP therapy in patients
suffering from ARDS, regardless of whether it is caused by COVID-19 or
other factors. The reasoning behind this decision is that COVID-19 com-
plications often lead to ARDS-like conditions [14]. The choice of the
therapy for which to predict the failure is driven by the ever-increasing
interest of the clinical community in H-CPAP therapy, which had a
crucial role during the COVID-19 Pandemic in 2020 and 2021 [9,20].

In light of this consideration, the medical question can be formu-
lated as: ‘‘given a patient affected by ARDS (regardless of whether it is
caused by COVID-19 or not) and treated with H-CPAP, what is the therapy
failure probability?’’. The target variable H-CPAP failure is therefore
defined as the likelihood of a patient seeing their therapy fail. More
specifically, we set H-CPAP failure to True if the patient passes away
during the course of the therapy or within 15 days following discharge,
or if the patient requires intubation subsequent to H-CPAP [6].

2.2. Considered data

This study considers patients admitted at the Vimercate Hospital
who were diagnosed with ARDS and treated with H-CPAP from January
2011 until about April 2022. The total number of such cases is 1000,
and the data is collected from the hospital EMR system. Only admis-
sions occurred after July 2017 include the Arterial Blood Gas (ABG)
analyses, as they were digitized in that year. Out of these 1000 cases,
about 23% experienced H-CPAP failure, while in about 77% of cases the
therapy was successful.

Since ARDS is an acute pathology [1], multiple admissions of the
same patient can occur and can be considered stochastically inde-
pendent. In our dataset, only very few patients experienced double
admissions. However, to avoid any possible correlated personal fea-
tures, we retained only the last admission for each patient with multiple
admissions (four out of eight).

In order to reduce missing values, we excluded from the evaluated
dataset those cases with missing PaO2/FiO2 Ratio analyses (most of
these were prior to 2017). This resulted in a final dataset of 622 cases,
with 21.54% showing positive H-CPAP failure and 78.46% indicating
negative H-CPAP failure. Fig. 1 shows the yearly admission stratified
distribution of these cases.

The data is extracted from various hospital databases, including
the Centralized Hospital System and the Laboratory System. Clinically
relevant features are extracted from these structured databases for each
patient admission. They include Sex and Age from the Hospital Discharge
Table, PaO2/FiO2 Ratio, Saturation in ABG, Creatinine, and other blood
tests from the Laboratory Results Table, the number of days in therapy
(CPAP days) from the Therapies Table, and Temperature, Saturation in
Pulse Oximetry, Respiratory Rate, and other parameters from the Vital
Signs Table. Since there are many multiple values for each of these
features, we retain for each patient only those closest in time to the
outcome of the therapy.
ial Agency of Brianza from ClinicalKey.com by Elsevier on 
rmission. Copyright ©2025. Elsevier Inc. All rights reserved.
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Fig. 2. Percentage on the training set of missing values for each feature. Features with
percentage greater than 20% are discarded.

Dataset clinical homogeneity is ensured by the implementation of
uniform guidelines on the use of H-CPAP throughout the study period.
Since the publication of a foundational study on H-CPAP by Cosentini
et al. [7] in 2010, clinical management has remained consistent.

2.3. Data pre-processing

We then split the obtained data in training and test sets. According
to Dobbin and Simon [21] and Rácz et al. [22], a good percentage for
the test set in the medical domain is at least 20% or higher, depending
on the size of the dataset. In our case, we allocate 70% of our dataset
to the training set and the remaining 30% to the test set, stratifying the
split on the target variable.

Studies utilizing EMR typically need pre-processing steps to trans-
form raw data into a refined dataset [23,24]. For this purpose, we use
the deletion method for features with a percentage of missing values on
the training set greater than 20% by discarding Chloride, Prothrombin
Time, Vascular Diseases, Diabetes, and other features (Fig. 2). The impu-
tation of the 38 remaining ones is performed with a multiple iterative
imputer; we use the IterativeImputer implementation by scikit-learn,
setting the parameters according to the official guidelines1: estimator
= BayesianRidge, initial strategy = mean, and max iter = 1000. It is
trained on the training set only and applied to both the training and
test sets.

The percentile method is used for evaluating outliers. It starts by
determining the 99th and 1st percentiles for each feature, which are
referred to as the high and low limits, respectively. Any values outside
these limits are clipped to these boundaries.

1 https://scikit-learn.org/1.5/auto_examples/impute/.
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Fig. 3. Example execution of the RFECV method, illustrating that a further decrease
below the identified threshold (red line) of the number of features used during model
training corresponds to a decrease in the accuracy of the model results.

2.4. Feature selection

To reduce the likelihood of overfitting and increase the general-
ization capabilities of the trained models, we perform a selection of
the features previously extracted and pre-processed. Performing feature
reduction has also the advantage of making the ML models more usable
by lowering the needed information. We use Recursive Feature Elimina-
tion with Cross Validation (RFECV ) method, initially proposed by Guyon
et al. [25], to reduce the number of features needed by the models. All
ML models that have a built-in ranking function for feature importance
can utilize the RFECV algorithm: it can be considered as a wrapper
of the ML model being trained. It starts by training a model with the
complete set of n features. Then, it calculates the importance of each
feature and the mean and standard deviation of the cross-validation
accuracies. The least important feature is removed, leaving n-1 features.
This process is repeated until only one feature remains, ending with n
trained models in a cross-validation fashion. At each step, the model
cross-validation performance metrics are recorded. Finally, the method
automatically determines the optimal number of features by choosing
the model that maximizes a performance metric considering both mean
and standard deviation. Fig. 3 shows an example of model performance
graph generated during the execution of the RFECV method on a ML
model. To prevent biases, we run this algorithm on the training set only.

2.5. Machine learning algorithms and metrics

The prediction task at hand regards the development of a binary
classifier, using a relatively small dataset and dealing with imbalanced
data. Thus, we focus on the following supervised learning algorithms:

• Logistic Regression (LR), a straightforward binary classifier; we
use a ‘‘SAGA’’ solver and ‘‘L1’’ penalty (i.e., incorporating a
LASSO regression). It performs well when the dataset is linearly
separable;

• Random Forest (RF ) and eXtreme Gradient Boosting (XGB), both
decision tree ensemble techniques that aim to improve the per-
formance of a single decision tree;

• Linear Support Vector Machines (SVM), a non probabilistic clas-
sifier method that works best when there is a clear margin of
separation between the classes. Due to the use of RFECV, our
evaluation is limited to the SVM with linear kernel. The use of
other kernels would have hindered the model’s built-in feature
importance system, thereby making the use of RFECV unfeasible.

• Fully Connected Neural Network (FC-NN) with one hidden layer
and Perceptron Classifier (PC), both based on Neural Networks
(NN) algorithms.
ial Agency of Brianza from ClinicalKey.com by Elsevier on 
rmission. Copyright ©2025. Elsevier Inc. All rights reserved.
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Table 1
Distribution of the target variable in training and test sets.
H-CPAP failure Training set Test set

False 341 78.39% 147 78.61%
True 94 21.61% 40 21.39%
All 435 69.94% 187 30.06%

Table 2
Cross-validation performances of the ML algorithms using all 38 features.

Model Accuracy Precision Recall F1-score

RF 90.34% 83.33% 69.15% 75.58%
±1.87% ±8.46% ±6.60% ±5.06%

XGB 90.80% 81.40% 74.47% 77.78%
±3.08% ±4.78% ±15.11% ±9.75%

SVM 91.95% 83.91% 77.66% 80.66%
±2.37% ±6.63% ±9.72% ±6.74%

LR 90.57% 79.78% 75.53% 77.60%
±3.28% ±9.23% ±12.72% ±8.26%

FC-NN 92.18% 84.09% 78.72% 81.32%
±1.34% ±3.16% ±6.53% ±3.67%

PC 89.43% 72.64% 81.91% 77.00%
±2.85% ±9.97% ±12.65% ±5.63%

The various algorithms are evaluated using standard classification
performance metrics, including overall accuracy, precision, recall (sen-
sitivity), F1-score, and specificity. Confusion matrices are employed
to examine classifications, and performances are also evaluated using
Receiver Operating Characteristic (ROC) curves.

We employ cross-validation on the training set for hyper-parameter
tuning, which aids in determining the optimal hyper-parameters of the
ML algorithms, such as the number of trees in our ensembles.

3. Results

3.1. Data sets

Our processed dataset split results in 435 training set samples and
87 test set samples, all with the 38 features kept as detailed in Fig. 2.

Being the split stratified based on the H-CPAP failure target variable,
both resulting sets have approximately 78% negative and 22% positive
H-CPAP failure samples (Table 1).

The training set is composed of 74.25% male and 25.75% female
patients, with an average age of 65.12 years and a consecutive therapy
uration of 8.64 days. The average PaO2/FiO2 Ratio is 234.59 mmHg,
aturation in ABG is 97.79% and Pulse Oximetry is 96.73%. The body
emperature averages at 36.3◦, the D-Dimer at 1276.46 mg/L FEU, the
reatinine at 0.95 mg/dL, and the C-Reactive Protein at 44.72 pg/mL.
est set sample values are comparable with those in training set. More

nformation on all features are provided in Tables A.5 and A.6.

3.2. Evaluation of approaches and algorithms

We train all the considered ML algorithms with the training set data
sing a 5-fold cross-validation approach and optimizing the F1-score.

Table 2 reports the cross-validation results of the algorithms, providing
an evaluation of their performance metrics using all 38 features.

Medium complexity ensemble models, such as RF and XGB, achieve
good cross-validation results in terms of accuracy, but lack in recall,
which affects the F1-score. This is also noticeable when looking at the
high recall standard deviation. The same is also true for LR with LASSO.
PC does not perform well in terms of accuracy, probably because it
is too simple to learn from these features. SVM model, particularly
suited for binary classification, performs very well. At the cost of being
more complex and less interpretable, this is the most performant non-
NN model for the case of 38 features. Lastly, the FC-NN model is the
 m
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Table 3
Cross-validation performances of the ML algorithms trained with a number of features
(Nf) reduced through the RFECV method.

Model Nf Accuracy Precision Recall F1-score

RF 7 90.57% 81.18% 73.40% 77.09%
XGB 13 91.49% 82.02% 77.66% 79.78%
SVM 23 92.64% 86.90% 77.66% 82.02%
LR 9 89.89% 79.07% 72.34% 75.56%

Table 4
Testing performances of the ML algorithms using the number of features (Nf) selected
in cross-validation.

Model Nf Accuracy Precision Recall F1-score

RF 38 93.05% 88.57% 77.50% 82.67%
7 91.98% 82.05% 80.00% 81.01%

XGB 38 93.05% 84.62% 85.50% 83.54%
13 94.12% 89.19% 82.50% 85.71%

SVM 38 95.19% 89.74% 87.50% 88.61%
23 93.58% 85.00% 85.00% 85.00%

LR 38 91.98% 83.78% 77.50% 80.52%
9 89.84% 78.38% 72.50% 75.32%

FC-NN 38 94.65% 89.47% 85.00% 87.18%
PC 38 91.98% 93.10% 67.50% 78.26%

only one to exceed 92% accuracy, maintaining high both precision and
recall, and a low standard deviation. Its architecture, with just one
hidden layer, makes it very suitable for the dataset.

The results for a reduced number of features, obtained by training
he models (except the NN -based ones, as they do not have built-in
eature importances) with the RFECV method, are shown in Table 3.

The outcomes achieved by these models align with those of models
rained with all 38 features.

The cross-validation methodology selected the following hyper-
parameters for our models using all 38 features. The RF had max depth
= 4, min samples leaf = 2 (among 2, 4, 8, 10), min samples split = 4
(2, 4, 8, 10), and n estimators = 1000 (100, 250, 500, 1000). The XGB
model had instead learning rate = 0.1 (0.1, 0.01, 0.001), max depth = 3
(3, 5, 7), subsample = 0.7 (0.7, 1.0), and n estimators = 100 (50, 100,
250, 500). The SVM model had gamma = 0.01 (0.1, 1.0, 10, 100, 1000)
and C = 0.1 (1.0, 0.1, 0.01, 0.001, 0.0001). The LR model with LASSO
had C = 10 (100, 10, 1.0, 0.1, 0.01), with a fixed penalty of L1 and
solver = SAGA. Lastly, for the FC-NN model the hyper-parameters were
solver = adam, activation = tanh, max iter = 200 (50, 100, 150, 200),
hidden layer sizes = (50,) ((25,), (50,), (100,)), and alpha = 0.01 (0.01,
0.005, 0.001).

3.3. Best performing models

Comparing Tables 2 and 3, it is evident that the SVM model per-
forms better than the others in terms of accuracy. It still maintains
ood results also in terms of overall F1-score. However, since this

type of model is more effective in high-dimensional spaces, it cannot
ignificantly reduce the number of features used. The XGB model

performs well, even when the number of features is reduced to almost
one third, particularly in terms of accuracy, recall, and F1-score. The
RF and LR with LASSO models tend to overly reduce the number of
eatures used, which leads to a lower performance.

Table 4 reveals that all the trained models are quite good in classi-
fying when using the test set.

In line with the cross-validation outcomes described in Table 2, the
VM and the FC-NN models exceed the others when considering all the
8 input features. In particular, in terms of accuracy the first achieves
ore than 95%, while the second scores more than 94%. Considering

he amount of features required, XGB and SVM seem the most powerful
odels, which aligns with the cross-validation results in Table 3.
ial Agency of Brianza from ClinicalKey.com by Elsevier on 
rmission. Copyright ©2025. Elsevier Inc. All rights reserved.



R. Campi et al. Computer Methods and Programs in Biomedicine 260 (2025) 108574 
Fig. 4. Test set confusion matrices of the SVMs (left), FC-NN (top right) and XGB
(bottom right) models. On the top, the matrices of the models trained with all 38
features, while on the bottom the ones of the models trained with 23 or 13 features,
respectively.

Considering the aforementioned models and their recall performance,
all fluctuate around 85%, making them suitable for the clinical use case
under study. The same models also performs well in precision, which
contributes to relatively high F1-scores, which fluctuate around 87%.
Instead, RF, LR with LASSO, and PC learn worsley, as evidenced by
both cross-validation and testing results.

Fig. 4 shows the test set confusion matrices of the SVMs with all 38
and with fewer features, and the ones of FC-NN and XGB models with
all 38 and with fewer features, respectively. The specificity is quite high
for the SVM and the FC-NN models with all 38 features, and for the XGB
model with 13 features, scoring 97.28% for all three. Conversely, the
specificity of the SVM model with 23 features achieves 95.92%. Fig. 5
shows the ROC curves.

3.4. Relevant factors

Fig. 6 presents the correlations in the training set between each
feature and the target variable H-CPAP failure, as determined by the
Pearson’s Correlation Coefficient. This provides an initial understanding
of the potential impact that each feature may have on the models.

The feature importances extracted from the SVM model that in-
cludes all 38 features are depicted in Fig. 7. Overall, the feature
selection RFECV method is good in pinpointing the features that pro-
vide the most relevant informational value to the model, effectively
discarding most of those of lesser importance. The SHapley Additive
exPlanations (SHAP) [26] values of the SVM model (Fig. 8) provide
additional verification for the feature importances.

Among the most important features, there are the Saturation in PO
and Saturation in ABG, which Wick et al. [27] demonstrated correlated
with ARDS severity, as well as the PaO2/FiO2 Ratio, which represents
the relationship between arterial oxygen pressure (PaO2) and the per-
centage of inhaled oxygen (FiO2). C-Reactive Protein is an inflammation
marker, which here proves to be significant in predicting the H-CPAP
therapy failure. The levels of this protein have a positive correlation
with the target variable, meaning that the higher the concentration of
C-Reactive Protein in the blood, the higher the likelihood of H-CPAP
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Fig. 5. Test set ROC curves of the SVMs (left) and FC-NN and XGB (right) models,
including the Area Under the Curve (AUC).

Fig. 6. Pearson’s Correlation Coefficient values between the H-CPAP failure variable and
each feature in the training set.

therapy failing. White Blood Cells (WBCs) count is another inflamma-
tion marker, whose increase has been associated with the presence of
ARDS [28]. On the other hand, a sudden drop in its level is associated
with a severe impairment of the immune system called leukopenia,
with a very high risk of contracting infections and poor health [29].
ial Agency of Brianza from ClinicalKey.com by Elsevier on 
rmission. Copyright ©2025. Elsevier Inc. All rights reserved.
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Fig. 7. Feature importance results for the SVM model trained using all 38 features.

D-Dimer is used to detect the presence of thrombosis or embolism,
as well as to identify potential causes of other conditions such as
pulmonary thromboembolism, which are all signs of occurred vessel
clotting. Long et al. [30] demonstrated that D-Dimer can be employed
as a marker of COVID-19 progression, since the SARS-CoV-2 disease
is linked with the development of Disseminated Intravascular Coag-
ulation. Considering that approximately 79.4% of the admissions in
our dataset regarded COVID-19-affected patients, this explains the
significance of the coagulation analysis in our predictions. eGFR and
Creatinine act as markers of kidney function and filtration capacity,
thereby providing insights into a patient’s overall renal health. Dar-
mon et al. [31] have established a connection between the risk of
acute kidney diseases and the presence of ARDS. Regarding Potassium
and Sodium levels, both arterial and otherwise, as well as Ionized
Calcium, Jomova et al. [32] demonstrated that either a deficiency
or an excess of these elements may result in a decline in health
conditions, and therefore can be indicators of an increased failure
probability. Respiratory Rate and Heartbeats are both important for the
prediction of H-CPAP failure. This is explained by the fact that altered
breathing is positively correlated with a severe ARDS, while constant
tachycardia is a sign of poor health, particularly in cardiovascular and
cardiorespiratory terms.

3.5. Implementation and availability

To make our study reproducible, our dataset, along with the Python
code used for pre-processing the data and training the models, as well
as the trained models, are provided at https://github.com/riccamper/
ARDS_H-CPAP_ML.

4. Discussion

The developed method enables for the creation of a ML-based
system capable of predicting the possible failure of H-CPAP therapy
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Fig. 8. SHAP explainability algorithm results for the 38 features used by the SVM
model. The higher the SHAP value of a feature is, the more important the feature is
in determining the model output.

before it occurs. The effectiveness of this system is determined not only
by its performance, but also by the number of features it requires to
make predictions. For these reasons, the best model is the one based
on SVM. With 38 features, it has an accuracy of 95.19%, an F1-score
of 88.61%, and it correctly identifies 87.50% of actual failures (recall).
Its low-features version identifies correctly 93.58% of the times, with
a F1-score of 85.00% and 23 features. The FC-NN model also proved
to be effective, achieving 94.65% of accuracy with all the features, as
well as the XGBoost, with 94.12% of accuracy using only 13 features.

In our study, several factors resulted influencing the outcome of the
H-CPAP therapy for ARDS patients, all supported by relevant literature
and medical knowledge. Key indicators such as recent PaO2/FiO2
Ratio, O2 Saturation (ABG and PO), and C-Reactive Protein evaluations,
along with other easily measurable parameters like Heartbeats and
Respiratory Rate, are identified as major contributors to the outcomes.

Furthermore, the study shows that while a primary clinical parame-
ter for monitoring ARDS patients such as PaO2/FiO2 Ratio is important,
it is not sufficient for accurately predicting the failure of H-CPAP. In
fact, this ratio does not provide comprehensive information about the
patient’s health status, particularly regarding inflammatory processes
and other vital aspects such as coagulation, liver and kidney health.

The use of ML techniques to predict H-CPAP therapy failure is
a data-driven approach that, when combined with medical expertise,
enhances the accuracy in predicting the patient’s clinical trajectory.
This allows for strategic planning and the delivery of more personalized
ial Agency of Brianza from ClinicalKey.com by Elsevier on 
rmission. Copyright ©2025. Elsevier Inc. All rights reserved.
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patient care. The feature reduction with the RFECV method on the
training set, besides limiting curse of dimensionality and overfitting
(thus providing more robust predictive models), can allow clinicians
to use ML algorithms more effectively; in fact, the handling of a lower
number of features is more suitable for the proper clinical management
of a patient.

Regarding the trade-off between sensitivity (recall) and specificity,
lso considering precision, we point out what follows. In our clinical
se case, identifying all high-risk H-CPAP therapy patients with high
ensitivity is useful, as it informs intensivists about which patients
re likely to require intubation. However, it is important to avoid
verwhelming intensivists with low-risk cases that are not classified
s such, meaning both specificity and precision should also be high.
ntubation will still be performed in the event of unexpected failure.
y training the models optimizing the F1-score, we balanced precision
nd sensitivity. This causes the specificity to be high. Thus, with both
pecificity and sensitivity results being high, the study findings are
ell-aligned with the clinical guidelines.

We acknowledge the limitations of our study, particularly its re-
iance on data from a single public assistance organization. The speci-
icity of this information makes it challenging to find comparable
atasets from other organizations and, to our knowledge, at the time
f writing in the literature there are no similar studies for comparison.
uture research could apply the same methodology to other assistance
rganizations data to better understand its impact on service quality.
oreover, validation on an external dataset or data from multiple

rganizations could enhance the study generalizability and models
obustness.

5. Conclusions

Predicting the potential failure of a therapy is a key aspect of
esigning a patient’s health treatment plan. In particular, anticipating

negative results from H-CPAP therapy for ARDS patients (whether
linked to COVID-19 or not) can be complex for medical professionals.
Our ML-based system can assist doctors in conventional diagnostic
techniques. This support can help prevent the deterioration of patients’
health and avoid needless expenses for the healthcare institution.

The system we propose allows predictions using 38 features with
n accuracy of 95.19%, a balanced precision and recall ratio, and an
1-score of 88.61%. The same system achieves 93.58% accuracy and
n F1-score of 85.00% with 23 features. This is achieved by training

an SVM model via cross-validation, optimizing the F1-score, and em-
ploying RFECV to minimize the features. The training data comes from
MRs of Pulmonology Department admissions at Vimercate Hospital.

The most important features for our ML-based system are the
PaO2/FiO2 Ratio, C-Reactive Protein, and O2 Saturation. These are
ollowed in importance by Heartbeats, White Blood Cells, and D-Dimer, in
ine with clinical literature, as well as Calcium, Potassium, and Sodium.

The promising results achieved could potentially be improved by
ncorporating additional features, such as the dimension of the PEEP

Valve, which is commonly connected to the expiratory port of the CPAP
Helmet and maintains positive end-expiratory pressure [10].

Institutional review board statement

Human participants were involved in this research; the study was
onducted in accordance with the Declaration of Helsinki. Our study
as approved by the local institution, Vimercate Hospital, ASST-
rianza, according to the legal requirements concerning observational
tudies (Resolutions 0000573 27/07/2021 and 0000133 22/02/2023).

Informed consent statement

Due to the nature of the present observational study and data
anonymization, the patients’ consent to participate was not required,
as declared by the ASST Brianza Ethics Committee.
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Table A.5
Overview of the training set, 38 features and 435 records.

Feature Mean (SD) / Percentages Unit

Sex 74.25% / 25.75% M/F
Age 65.12 (±12.00) years
CPAP days 8.64 (±5.89) days
Potassium 4.16 (±0.42) mmol/L
Sodium 139.25 (±3.74) mmol/L
Creatinine 0.95 (±0.46) mg/dL
eGFR 56.43 (±9.48) mL/min
MCHC 32.79 (±1.27) g/dL
RBC 4.33 (±0.58) cells/mcL
Hematocrit 39.04 (±4.55) %
Platelet Count 282.28 (±106.70) cells/mcL
MCH 29.77 (±2.03) pg
WBCs 10.47 (±4.38) cells/mcL
Hemoglobin 12.32 (±2.82) g/dL
MCV 90.87 (±5.63) fL
C-Reactive Protein 44.72 (±60.59) pg/mL
RDW 13.50 (±1.51) %
ALT 52.64 (±38.87) U/L
AST 32.89 (±19.77) U/L
D-Dimer 1276.46 (±1949.91) mg/L FEU
PaO2 145.69 (±73.43) mmHg
Arterial Glucose 152.73 (±70.09) mg/dL
Arterial Potassium 3.98 (±0.43) mmol/L
PaCO2 39.05 (±5.70) mmHg
Arterial Sodium 134.76 (±3.91) mmol/L
Saturation (ABG) 97.79 (±3.08) %
Base Excess 4.44 (±3.66) mmol/L
HCO3 28.44 (±4.10) mmol/L
Ionized Calcium 1.14 (±0.06) mg/dL
Arterial Lactate 1.61 (±0.65) mmol/L
FiO2 67.43 (±15.71) mmHg
PaO2/FiO2 Ratio 234.59 (±116.46) mmHg
Resp. Rate 15.84 (±2.67) acts/min
Heartbeats 76.41 (±15.01) BPM
Saturation (PO) 96.73 (±4.05) %
Temperature 36.26 (±0.44) C◦

Diastolic 73.09 (±11.72) mmHg
Systolic 127.49 (±17.69) mmHg

H-CPAP failure 78.39% / 21.61% Neg/Pos
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Appendix. Additional material

In the appendix, we provide an overview of the training and test
sets used in this study. Refer to Tables A.5 and A.6 for more details.
ial Agency of Brianza from ClinicalKey.com by Elsevier on 
rmission. Copyright ©2025. Elsevier Inc. All rights reserved.



R. Campi et al. Computer Methods and Programs in Biomedicine 260 (2025) 108574 
Table A.6
Overview of the test set, 38 features and 187 records.

Feature Mean (SD) / Percentages Unit

Sex 75.40% / 24.60% M/F
Age 65.13 (±11.33) years
CPAP days 8.90 (±5.27) days
Potassium 4.21 (±0.47) mmol/L
Sodium 139.50 (±3.55) mmol/L
Creatinine 0.98 (±0.53) mg/dL
eGFR 56.02 (±10.43) mL/min
MCHC 32.67 (±1.21) g/dL
RBC 4.29 (±0.63) cells/mcL
Hematocrit 38.75 (±4.69) %
Platelet Count 287.70 (±110.90) cells/mcL
MCH 29.66 (±1.91) pg
WBCs 10.46 (±4.40) cells/mcL
Hemoglobin 12.38 (±2.38) g/dL
MCV 90.90 (±5.54) fL
C-Reactive Protein 45.92 (±60.52) pg/mL
RDW 13.51 (±1.51) %
ALT 50.47 (±36.05) U/L
AST 32.77 (±20.91) U/L
D-Dimer 1333.30 (±1990.44) mg/L FEU
PaO2 136.92 (±70.79) mmHg
Arterial Glucose 154.91 (±65.15) mg/dL
Arterial Potassium 4.02 (±0.48) mmol/L
PaCO2 38.67 (±5.56) mmHg
Arterial Sodium 134.76 (±3.86) mmol/L
Saturation (ABG) 97.54 (±3.14) %
Base Excess 4.16 (±3.38) mmol/L
HCO3 28.09 (±3.80) mmol/L
Ionized Calcium 1.14 (±0.06) mg/dL
Arterial Lactate 1.68 (±0.71) mmol/L
FiO2 67.43 (±16.73) mmHg
PaO2/FiO2 Ratio 220.63 (±109.96) mmHg
Resp. Rate 15.91 (±3.28) acts/min
Heartbeats 73.82 (±14.42) BPM
Saturation (PO) 96.70 (±4.21) %
Temperature 36.26 (±0.44) C◦

Diastolic 71.80 (±11.02) mmHg
Systolic 125.46 (±17.90) mmHg

H-CPAP failure 78.61% / 21.39% Neg/Pos
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